Microdamage in porcine alveolar bone due to functional and orthodontic loading.
نویسندگان
چکیده
Bone remodelling has been associated with microdamage. The aim of this study was to investigate the presence of microdamage in the alveolar bone and its potential role in the initiation of bone remodelling following the application of an orthodontic load. The three-dimensional morphology of the alveolar bone was investigated by means of high resolution micro-CT scanning. In 25, 3-month-old, male Danish land-race pigs, the alveolar bone around the lower right and left first molars was analysed. The right first molar was moved buccally with a force of 130 cN by means of a custom-made cantilever made of a TMA 0.017 x 0.025 inch wire. The left molar was left untreated. After 1, 2, 4, 7 and 15 days of treatment the regions containing the right and left molars were excised and en bloc stained in basic fuchsin and the presence of microdamage detected. Diffuse damage was present in the alveolar bone of both the treated and the untreated teeth on both sides. On the lingual sides, diffuse damage showed the same orientation as the periodontal fibres. Bone microcracks were also detected on both the treated and untreated teeth. On the buccal surfaces they where often observed in close proximity to scalloped resorption surfaces. After 1 day of treatment, the presence of microcracks on the buccal-treated side was particularly marked. To conclude, bone microdamage is present in porcine alveolar bone in form of both microcracks and diffuse damage, suggesting that microdamage-driven remodelling also occurs in the alveolar bone. The presence of bone microcracks in the direction of the orthodontic force at day 1 suggests that they could represent the first damage induced by the orthodontic load that has to be repaired.
منابع مشابه
Microcracks in the alveolar bone following orthodontic tooth movement: a morphological and morphometric study.
Microcracks and microdamage have been associated with bone remodelling. The aim of this study was to investigate the role of microcracks as a trigger for alveolar bone remodelling after the application of an orthodontic load. In 25 3-month-old male Danish land-race pigs, the lower right first molar was moved buccally with a force of 130 cN. The contralateral molar was not treated and was used a...
متن کاملBone microdamage, remodeling and bone fragility: how much damage is too much damage?
Microdamage resulting from fatigue or 'wear and tear' loading contributes to bone fragility; however, the full extent of its influence is not completely understood. Linear microcracks (∼50-100 μm) and diffuse damage (clusters of sublamellar-sized cracks) are the two major bone microdamage types, each with different mechanical and biological consequences. Healthy bone, due to its numerous micros...
متن کاملSelf-Repair of Rat Cortical Bone Microdamage after Fatigue Loading In Vivo
Bone microdamage can be repaired through bone remodeling induced by loading. In this study, a loading device was developed for improved efficiency and the self-repair process of bone microdamage was studied in ovariectomized rats. First, four-point bending fixtures capable of holding two live rats simultaneously were designed. Rats were loaded and subjected to a sinusoidal wave for 10,000 cycle...
متن کاملActivation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage.
Recent experiments point to two predominant forms of fatigue microdamage in bone: linear microcracks (tens to a few hundred microns in length) and "diffuse damage" (patches of diffuse stain uptake in fatigued bone comprised of clusters of sublamellar-sized cracks). The physiological relevance of diffuse damage in activating bone remodeling is not known. In this study microdamage amount and type...
متن کاملMicrodamage Caused by Fatigue Loading in Human Cancellous Bone: Relationship to Reductions in Bone Biomechanical Performance
Vertebral fractures associated with osteoporosis are often the result of tissue damage accumulated over time. Microscopic tissue damage (microdamage) generated in vivo is believed to be a mechanically relevant aspect of bone quality that may contribute to fracture risk. Although the presence of microdamage in bone tissue has been documented, the relationship between loading, microdamage accumul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of morphology
دوره 42 1-2 شماره
صفحات -
تاریخ انتشار 2005